Криптографические методы защиты информации. Криптографические средства защиты информации Аппаратные скзи

Конфиденциальность информации характеризуется такими, казалось бы, противоположными показателями, как доступность и скрытность. Методы, обеспечивающие доступность информации для пользователей, рассмотрены в разделе 9.4.1. В настоящем разделе рассмотрим способы обеспечения скрытности информации. Данное свойство информации характеризуется степенью маскировки информации и отражает ее способность противостоять раскрытию смысла информационных массивов, определению структуры хранимого информационного массива или носителя (сигнала-переносчика) передаваемого информационного массива и установлению факта передачи информационного массива по каналам связи. Критериями оптимальности при этом, как правило, являются:

    минимизация вероятности преодоления («взлома») защиты;

    максимизация ожидаемого безопасного времени до «взлома» подсистемы защиты;

    минимизация суммарных потерь от «взлома» защиты и затрат на разработку и эксплуатацию соответствующих элементов подсистемы контроля и защиты информации и т.п.

Обеспечить конфиденциальность информации между абонентами в общем случае можно одним из трех способов:

    создать абсолютно надежный, недоступный для других канал связи между абонентами;

    использовать общедоступный канал связи, но скрыть сам факт передачи информации;

    использовать общедоступный канал связи, но передавать по нему информацию в преобразованном виде, причем преобразовать ее надо так, чтобы восстановить ее мог только адресат.

Первый вариант практически нереализуем из-за высоких материальных затрат на создание такого канала между удаленными абонентами.

Одним из способов обеспечения конфиденциальности передачи информации является стеганография . В настоящее время она представляет одно из перспективных направлений обеспечения конфиденциальности хранящейся или передаваемой информации в компьютерных системах за счет маскирования закрытой информации в открытых файлах, прежде всего мультимедийных.

Разработкой методов преобразования (шифрования) информации с целью ее защиты от незаконных пользователей занимается криптография .

Криптография (иногда употребляют термин криптология) – область знаний, изучающая тайнопись (криптография) и методы ее раскрытия (криптоанализ). Криптография считается разделом математики.

До недавнего времени все исследования в этой области были только закрытыми, но в последние несколько лет стало появляться всё больше публикаций в открытой печати. Отчасти смягчение секретности объясняется тем, что стало уже невозможным скрывать накопленное количество информации. С другой стороны, криптография всё больше используется в гражданских отраслях, что требует раскрытия сведений.

9.6.1. Принципы криптографии. Цель криптографической системы заключается в том, чтобы зашифровать осмысленный исходный текст (также называемый открытым текстом), получив в результате совершенно бессмысленный на взгляд шифрованный текст (шифртекст, криптограмма). Получатель, которому он предназначен, должен быть способен расшифровать (говорят также «дешифровать») этот шифртекст, восстановив, таким образом, соответствующий ему открытый текст. При этом противник (называемый также криптоаналитиком) должен быть неспособен раскрыть исходный текст. Существует важное отличие между расшифрованием (дешифрованием) и раскрытием шифртекста.

Криптографические методы и способы преобразования информации называются шифрами . Раскрытием криптосистемы (шифра) называется результат работы криптоаналитика, приводящий к возможности эффективного раскрытия любого, зашифрованного с помощью данной криптосистемы, открытого текста. Степень неспособности криптосистемы к раскрытию называется ее стойкостью.

Вопрос надёжности систем защиты информации очень сложный. Дело в том, что не существует надёжных тестов, позволяющих убедиться в том, что информация защищена достаточно надёжно. Во-первых, криптография обладает той особенностью, что на «вскрытие» шифра зачастую нужно затратить на несколько порядков больше средств, чем на его создание. Следовательно, тестовые испытания системы криптозащиты не всегда возможны. Во-вторых, многократные неудачные попытки преодоления защиты вовсе не означают, что следующая попытка не окажется успешной. Не исключён случай, когда профессионалы долго, но безуспешно бились над шифром, а некий новичок применил нестандартный подход – и шифр дался ему легко.

В результате такой плохой доказуемости надёжности средств защиты информации на рынке очень много продуктов, о надёжности которых невозможно достоверно судить. Естественно, их разработчики расхваливают на все лады своё произведение, но доказать его качество не могут, а часто это и невозможно в принципе. Как правило, недоказуемость надёжности сопровождается ещё и тем, что алгоритм шифрования держится в секрете.

На первый взгляд, секретность алгоритма служит дополнительным обеспечением надёжности шифра. Это аргумент, рассчитанный на дилетантов. На самом деле, если алгоритм известен разработчикам, он уже не может считаться секретным, если только пользователь и разработчик – не одно лицо. К тому же, если вследствие некомпетентности или ошибок разработчика алгоритм оказался нестойким, его секретность не позволит проверить его независимым экспертам. Нестойкость алгоритма обнаружится только тогда, когда он будет уже взломан, а то и вообще не обнаружится, ибо противник не спешит хвастаться своими успехами.

Поэтому криптограф должен руководствоваться правилом, впервые сформулированным голландцем О. Керкгоффсом: стойкость шифра должна определяться только секретностью ключа. Иными словами, правило О. Керкгхоффса состоит в том, что весь механизм шифрования, кроме значения секретного ключа априори считается известным противнику.

Другое дело, что возможен метод защиты информации (строго говоря, не относящийся к криптографии), когда скрывается не алгоритм шифровки, а сам факт того, что сообщение содержит зашифрованную (скрытую в нём) информацию. Такой приём правильнее назвать маскировкой информации. Он будет рассмотрен отдельно.

История криптографии насчитывает несколько тысяч лет. Потребность скрывать написанное появилась у человека почти сразу, как только он научился писать. Широко известным историческим примером криптосистемы является так называемый шифр Цезаря, который представляет собой простую замену каждой буквы открытого текста третьей следующей за ней буквой алфавита (с циклическим переносом, когда это необходимо). Например, A заменялась наD ,B наE ,Z наC .

Несмотря на значительные успехи математики за века, прошедшие со времён Цезаря, тайнопись вплоть до середины XX века не сделала существенных шагов вперёд. В ней бытовал дилетантский, умозрительный, ненаучный подход.

Например, в XX веке широко применялись профессионалами «книжные» шифры, в которых в качестве ключа использовалось какое-либо массовое печатное издание. Надо ли говорить, как легко раскрывались подобные шифры! Конечно, с теоретической точки зрения, «книжный» шифр выглядит достаточно надёжным, поскольку множество его перебрать которое вручную невозможно. Однако, малейшая априорная информация резко сужает этот выбор.

Кстати, об априорной информации. Во время Великой Отечественной войны, как известно, Советский Союз уделял значительное внимание организации партизанского движения. Почти каждый отряд в тылу врага имел радиостанцию, а также то или иное общение с «большой землей». Имевшиеся у партизан шифры были крайне нестойкими – немецкие дешифровщики расшифровывали их достаточно быстро. А это, как известно, выливалось в боевые поражения и потери. Партизаны оказались хитры и изобретательны и в этой области тоже. Приём был предельно прост. В исходном тексте сообщения делалось большое количество грамматических ошибок, например, писали: «прошсли тры эшшелона з тнками». При верной расшифровке для русского человека всё было понятно. Но криптоаналитики противника перед подобным приёмом оказались бессильны: перебирая возможные варианты, они встречали невозможное для русского языка сочетание «тнк» и отбрасывали данный вариант как заведомо неверный.

Этот, казалось бы, доморощенный приём, на самом деле, очень эффективен и часто применяется даже сейчас. В исходный текст сообщения подставляются случайные последовательности символов, чтобы сбить с толку криптоаналитические программы, работающие методом перебора или изменить статистические закономерности шифрограммы, которые также могут дать полезную информацию противнику. Но в целом всё же можно сказать, что довоенная криптография была крайне слаба и на звание серьёзной науки претендовать не могла.

Однако жёстокая военная необходимость вскоре заставила учёных вплотную заняться проблемами криптографии и криптоанализа. Одним из первых существенных достижений в этой области была немецкая пишущая машинка «Энигма», которая фактически являлась механическим шифратором и дешифратором с достаточно высокой стойкостью.

Тогда же, в период второй мировой войны появились и первые профессиональные службы дешифровки. Самая известная из них – «Блечли-парк», подразделение английской службы разведки «МИ-5».

9.6.2. Типы шифров. Все методы шифровки можно разделить на две группы: шифры с секретным ключом и шифры с открытым ключом. Первые характеризуются наличием некоторой информации (секретного ключа), обладание которой даёт возможность как шифровать, так и расшифровывать сообщения. Поэтому они именуются также одноключевыми. Шифры с открытым ключом подразумевают наличие двух ключей – для расшифровки сообщений. Эти шифры называют также двухключевыми.

Правило зашифрования не может быть произвольным. Оно должно быть таким, чтобы по шифртексту с помощью правила расшифрования можно было однозначно восстановить открытое сообщение. Однотипные правила зашифрования можно объединить в классы. Внутри класса правила различаются между собой по значениям некоторого параметра, которое может быть числом, таблицей и т.д. В криптографии конкретное значение такого параметра обычно называют ключом .

По сути дела, ключ выбирает конкретное правило зашифрования из данного класса правил. Это позволяет, во-первых, при использовании для шифрования специальных устройств изменять значение параметров устройства, чтобы зашифрованное сообщение не смогли расшифровать даже лица, имеющие точно такое же устройство, но не знающие выбранного значения параметра, и во-вторых, позволяет своевременно менять правило зашифрования, так как многократное использование одного и того же правила зашифрования для открытых текстов создает предпосылки для получения открытых сообщений по шифрованным.

Используя понятие ключа, процесс зашифрования можно описать в виде соотношения:

где A – открытое сообщение;B – шифрованное сообщение;f – правило шифрования;α – выбранный ключ, известный отправителю и адресату.

Для каждого ключа α шифрпреобразованиедолжно быть обратимым, то есть должно существовать обратное преобразование, которое при выбранном ключеα однозначно определяет открытое сообщениеA по шифрованному сообщениюB :

(9.0)

Совокупность преобразований и набор ключей, которым они соответствуют, называютшифром . Среди всех шифров можно выделить два больших класса: шифры замены и шифры перестановки. В настоящее время для защиты информации в автоматизированных системах широко используются электронные шифровальные устройства. Важной характеристикой таких устройств является не только стойкость реализуемого шифра, но и высокая скорость осуществления процесса шифрования и расшифрования.

Иногда смешивают два понятия: шифрование икодирование . В отличие от шифрования, для которого надо знать шифр и секретный ключ, при кодировании нет ничего секретного, есть только определенная замена букв или слов на заранее определенные символы. Методы кодирования направлены не на то, чтобы скрыть открытое сообщение, а на то, чтобы представить его в более удобном виде для передачи по техническим средствам связи, для уменьшения длины сообщения, защиты искажений и т.д.

Шифры с секретным ключом . Этот тип шифров подразумевает наличие некоторой информации (ключа), обладание которой позволяет как зашифровать, так и расшифровать сообщение.

С одной стороны, такая схема имеет те недостатки, что необходимо кроме открытого канала для передачи шифрограммы наличие также секретного канала для передачи ключа, кроме того, при утечке информации о ключе, невозможно доказать, от кого из двух корреспондентов произошла утечка.

С другой стороны, среди шифров именно этой группы есть единственная в мире схема шифровки, обладающая абсолютной теоретической стойкостью. Все прочие можно расшифровать хотя бы в принципе. Такой схемой является обычная шифровка (например, операцией XOR) с ключом, длина которого равна длине сообщения. При этом ключ должен использоваться только раз. Любые попытки расшифровать такое сообщение бесполезны, даже если имеется априорная информация о тексте сообщения. Осуществляя подбор ключа, можно получить в результате любое сообщение.

Шифры с открытым ключом . Этот тип шифров подразумевает наличие двух ключей – открытого и закрытого; один используется для шифровки, другой для расшифровки сообщений. Открытый ключ публикуется – доводится до сведения всех желающих, секретный же ключ хранится у его владельца и является залогом секретности сообщений. Суть метода в том, что зашифрованное при помощи секретного ключа может быть расшифровано лишь при помощи открытого и наоборот. Ключи эти генерируются парами и имеют однозначное соответствие друг другу. Причём из одного ключа невозможно вычислить другой.

Характерной особенностью шифров этого типа, выгодно отличающих их от шифров с секретным ключом, является то, что секретный ключ здесь известен лишь одному человеку, в то время как в первой схеме он должен быть известен, по крайней мере, двоим. Это даёт такие преимущества:

    не требуется защищённый канал для пересылки секретного ключа;

    вся связь осуществляется по открытому каналу;

    наличие единственной копии ключа уменьшает возможности его утраты и позволяет установить чёткую персональную ответственность за сохранение тайны;

    наличие двух ключей позволяет использовать данную шифровальную систему в двух режимах – секретная связь и цифровая подпись.

Простейшим примером рассматриваемых алгоритмов шифровки служит алгоритм RSA. Все другие алгоритмы этого класса отличаются от него непринципиально. Можно сказать, что, по большому счёту,RSAявляется единственным алгоритмом с открытым ключом.

9.6.3. Алгоритм RSA. RSA(назван по имени авторов –Rivest, Shamir и Alderman) – это алгоритм с открытым ключом (public key), предназначенный как для шифрования, так и для аутентификации (цифровой подписи). Данный алгоритм разработан в 1977 году и основан на разложении больших целых чисел на простые сомножители (факторизации).

RSA– очень медленный алгоритм. Для сравнения, на программном уровнеDESпо меньше мере в 100 раз быстрееRSA; на аппаратном – в 1 000-10 000 раз, в зависимости от выполнения.

Алгоритм RSAзаключается в следующем. Берутся два очень больших простых числаp иq . Определяетсяn как результат умноженияp наq (n =p q ). Выбирается большое случайное целое числоd , взаимно простое сm , где
. Определяется такое числоe , что
. Назовем открытым ключомe иn , а секретным ключом – числаd иn .

Теперь, чтобы зашифровать данные по известному ключу {e ,n }, необходимо сделать следующее:

разбить шифруемый текст на блоки, каждый из которых может быть представлен в виде числа M (i )=0,1,…,n -1;

зашифровать текст, рассматриваемый как последовательность чисел M (i ) по формулеC (i )=(M (i )) modn ;

чтобы расшифровать эти данные, используя секретный ключ {d ,n }, необходимо выполнить следующие вычисленияM (i )=(C (i ))modn .

В результате будет получено множество чисел M (i ), которые представляют собой исходный текст.

Пример. Рассмотрим применение методаRSAдля шифрования сообщения: «ЭВМ». Для простоты будем применять очень маленькие числа (на практике используются намного большие числа – от 200 и выше).

    Выберем p =3 иq =11. Определимn =3×11=33.

    Найдем (p -1)×(q -1)=20. Следовательно, в качествеd выберем любое число, которое является взаимно простым с 20, напримерd =3.

    Выберем число e . В качестве такого числа может быть взято любое число, для которого выполняется соотношение (e ×3) mod 20=1, например, 7.

    Представим шифруемое сообщение как последовательность целых чисел в диапазоне 1…32. Пусть буква «Э» изображается числом 30, буква «В» – числом 3, а буква «М» – числом 13. Тогда исходное сообщение можно представить в виде последовательности чисел {30 03 13}.

    Зашифруем сообщение, используя ключ {7,33}.

С1=(307) mod 33=21870000000 mod 33=24,

С2=(37) mod 33=2187 mod 33=9,

С3=(137) mod 33=62748517 mod 33=7.

Таким образом, зашифрованное сообщение имеет вид {24 09 07}.

Решим обратную задачу. Расшифруем сообщение {24 09 07}, полученное в результате зашифрования по известному ключу, на основе секретного ключа {3,33}:

М1=(24 3) mod 33=13824 mod 33=30,

М2=(9 3) mod 33=739 mod 33=9,

М3=(7 3)mod33=343mod33=13.

Таким образом, в результате расшифрования сообщения получено исходное сообщение «ЭВМ».

Криптостойкость алгоритма RSAосновывается на предположении, что исключительно трудно определить секретный ключ по известному, поскольку для этого необходимо решить задачу о существовании делителей целого числа. Данная задача являетсяNP-полной и, как следствие этого факта, не допускает в настоящее время эффективного (полиномиального) решения. Более того, сам вопрос существования эффективных алгоритмов решенияNP-полных задач до настоящего времени открыт. В связи с этим для чисел, состоящих из 200 цифр (а именно такие числа рекомендуется использовать), традиционные методы требуют выполнения огромного числа операций (порядка 1023).

Алгоритм RSA(рис. 9.2) запатентован в США. Его использование другими лицами не разрешено (при длине ключа свыше 56 бит). Правда, справедливость такого установления можно поставить под вопрос: как можно патентовать обычное возведение в степень? Но, тем не менее,RSAзащищён законами об авторских правах.

Рис. 9.2. Схема шифрования

Сообщение, зашифрованное при помощи открытого ключа какого-либо абонента, может быть расшифровано только им самим, поскольку только он обладает секретным ключом. Таким образом, чтобы послать закрытое сообщение, вы должны взять открытый ключ получателя и зашифровать сообщение на нём. После этого даже вы сами не сможете его расшифровать.

9.6.4. Электронная подпись. Когда мы действуем наоборот, то есть шифруем сообщение при помощи секретного ключа, то расшифровать его может любой желающий (взяв ваш открытый ключ). Но сам факт того, что сообщение было зашифровано вашим секретным ключом, служит подтверждением, что исходило оно именно от вас – единственного в мире обладателя секретного ключа. Этот режим использования алгоритма называется цифровой подписью.

С точки зрения технологии, электронная цифровая подпись – это программно-криптографическое (то есть соответствующим образом зашифрованное) средство, позволяющее подтвердить, что подпись, стоящая на том или ином электронном документе, поставлена именно его автором, а не каким-либо другим лицом. Электронная цифровая подпись представляет собой набор знаков, генерируемый по алгоритму, определенному ГОСТ Р 34.0-94 и ГОСТ Р 34.-94. Одновременно электронная цифровая подпись позволяет убедиться в том, что подписанная методом электронной цифровой подписи информация не была изменена в процессе пересылки и была подписана отправителем именно в том виде, в каком вы ее получили.

Процесс электронного подписания документа (рис. 9.3) довольно прост: массив информации, который необходимо подписать, обрабатывается специальным программным обеспечением с использованием так называемого закрытого ключа. Далее зашифрованный массив отправляется по электронной почте и при получении проверяется соответствующим открытым ключом. Открытый ключ позволяет проверить сохранность массива и удостовериться в подлинности электронной цифровой подписи отправителя. Считается, что данная технология имеет 100% защиту от взлома.

Рис. 9.3. Схема процесса электронного подписания документа

Секретный ключ (код) есть у каждого субъекта, имеющего право подписи, и может храниться на дискете или смарт-карте. Открытый ключ используется получателями документа для проверки подлинности электронной цифровой подписи. При помощи электронной цифровой подписи можно подписывать отдельные файлы или фрагменты баз данных.

В последнем случае программное обеспечение, реализующее электронную цифровую подпись, должно встраиваться в прикладные автоматизированные системы.

Согласно новому закону, процедура сертификации средств электронной цифровой подписи и сертификации самой подписи четко регламентирована.

Это означает, что наделенный соответствующими полномочиями государственный орган должен подтвердить, что то или иное программное обеспечение для генерации электронной цифровой подписи действительно вырабатывает (или проверяет) только электронную цифровую подпись и ничего другого; что соответствующие программы не содержат вирусов, не скачивают у контрагентов информацию, не содержат «жучков» и гарантируют от взлома. Сертификация самой подписи означает, что соответствующая организация – удостоверяющий центр – подтверждает, что данный ключ принадлежит именно данному лицу.

Подписывать документы можно и без указанного сертификата, но в случае возникновения судебного разбирательства доказывать что-либо будет сложно. Сертификат в таком случае незаменим, так как сама подпись данных о своем владельце не содержит.

К примеру, гражданин А и гражданинВ заключили договор на сумму 10000 рублей и заверили договор своими ЭЦП. ГражданинА свое обязательство не выполнил. Обиженный гражданинВ , привыкший действовать в рамках правового поля, идет в суд, где подтверждается достоверность подписи (соответствие открытого ключа закрытому). Однако гражданинА заявляет, что закрытый ключ вообще не его. При возникновении подобного прецедента с обычной подписью проводится графологическая экспертиза, в случае же с ЭЦП необходимо третье лицо или документ, с помощью которого можно подтвердить, что подпись действительно принадлежит данному лицу. Именно для этого и предназначен сертификат открытого ключа.

На сегодня одними из наиболее популярных программных средств, реализующих основные функции электронной цифровой подписи, являются системы «Верба» и «КриптоПРО CSP».

9.6.5. ХЭШ-функция. Как было показано выше, шифр с открытым ключом может использоваться в двух режимах: шифровки и цифровой подписи. Во втором случае не имеет смысла шифровать весь текст (данные) при помощи секретного ключа. Текст оставляют открытым, а шифруют некую «контрольную сумму» этого текста, в результате чего образуется блок данных, представляющий собой цифровую подпись, которая добавляется в конец текста или прилагается к нему в отдельном файле.

Упомянутая «контрольная сумма» данных, которая и «подписывается» вместо всего текста, должна вычисляться из всего текста, чтобы изменение любой буквы отражалось на ней. Во-вторых, указанная функция должна быть односторонняя, то есть вычислимая лишь «в одну сторону». Это необходимо для того, чтобы противник не смог целенаправленно изменять текст, подгоняя его под имеющуюся цифровую подпись.

Такая функция называется Хэш-функцией , которая так же, как и криптоалгоритмы, подлежит стандартизации и сертификации. В нашей стране она регламентируется ГОСТ Р-3411.Хэш-функция – функция, осуществляющая хэширование массива данных посредством отображения значений из (очень) большого множества значений в (существенно) меньшее множество значений. Кроме цифровой подписи хэш-функции используются и в других приложениях. Например, при обмене сообщениями удалённых компьютеров, когда требуется аутентификация пользователя, может применяться метод, основанный на хэш-функции.

Пусть Хэш-код создается функциейН :

,

где М является сообщением произвольной длины иh является хэш-кодом фиксированной длины.

Рассмотрим требования, которым должна соответствовать хэш-функция для того, чтобы она могла использоваться в качестве аутентификатора сообщения. Рассмотрим очень простой пример хэш-функции. Затем проанализируем несколько подходов к построению хэш-функции.

Хэш-функция Н , которая используется для аутентификации сообщений, должна обладать следующими свойствами:

    Н (M ) должна применяться к блоку данных любой длины;

    Н (M ) создавать выход фиксированной длины;

    Н (M ) относительно легко (за полиномиальное время) вычисляется для любого значенияМ ;

    для любого данного значения хэш-кода h невозможно найтиM такое, чтоН (M ) =h ;

    для любого данного х вычислительно невозможно найтиy x , чтоH (y ) =H (x );

    вычислительно невозможно найти произвольную пару (х ,y ) такую, чтоH (y ) =H (x ).

Первые три свойства требуют, чтобы хэш-функция создавала хэш-код для любого сообщения.

Четвертое свойство определяет требование односторонности хэш-функции: легко создать хэш-код по данному сообщению, но невозможно восстановить сообщение по данному хэш-коду. Это свойство важно, если аутентификация с использованием хэш-функции включает секретное значение. Само секретное значение может не посылаться, тем не менее, если хэш-функция не является односторонней, противник может легко раскрыть секретное значение следующим образом.

Пятое свойство гарантирует, что невозможно найти другое сообщение, чье значение хэш-функции совпадало бы со значением хэш-функции данного сообщения. Это предотвращает подделку аутентификатора при использовании зашифрованного хэш-кода. В данном случае противник может читать сообщение и, следовательно, создать его хэш-код. Но так как противник не владеет секретным ключом, он не имеет возможности изменить сообщение так, чтобы получатель этого не обнаружил. Если данное свойство не выполняется, атакующий имеет возможность выполнить следующую последовательность действий: перехватить сообщение и его зашифрованный хэш-код, вычислить хэш-код сообщения, создать альтернативное сообщение с тем же самым хэш-кодом, заменить исходное сообщение на поддельное. Поскольку хэш-коды этих сообщений совпадают, получатель не обнаружит подмены.

Хэш-функция, которая удовлетворяет первым пяти свойствам, называется простой илислабой хэш-функцией. Если, кроме того, выполняется шестое свойство, то такая функция называетсясильной хэш-функцией. Шестое свойство защищает против класса атак, известных как атака «день рождения».

Все хэш-функции выполняются следующим образом. Входное значение (сообщение, файл и т.п.) рассматривается как последовательность n -битных блоков. Входное значение обрабатывается последовательно блок за блоком, и создаетсяm- битное значение хэш-кода.

Одним из простейших примеров хэш-функции является побитный XORкаждого блока:

С i = b i 1 XOR b i2 XOR. . . XOR b ik ,

где С i i -й бит хэш-кода, i = 1, …, n ;

k – числоn -битных блоков входа;

b ij i -й бит вj -м блоке.

В результате получается хэш-код длины n , известный как продольный избыточный контроль. Это эффективно при случайных сбоях для проверки целостности данных.

9.6.6. DES И ГОСТ-28147. DES (Data Encryption Standart) – это алгоритм с симметричными ключами, т.е. один ключ используется как для шифровки, так и для расшифровки сообщений. Разработан фирмой IBM и утвержден правительством США в 1977 как официальный стандарт для защиты информации, не составляющей государственную тайну.

DES имеет блоки по 64 бит, основан на 16-кратной перестановке данных, для шифрования использует ключ длиной 56 бит. Существует несколько режимов DES, например Electronic Code Book (ECB) и Cipher Block Chaining (CBC). 56 бит – это 8 семибитовых ASCII-символов, т.е. пароль не может быть больше чем 8 букв. Если вдобавок использовать только буквы и цифры, то количество возможных вариантов будет существенно меньше максимально возможных 256.

Один из шагов алгоритма DES . Входной блок данных делится пополам на левую (L" ) и правую (R" ) части. После этого формируется выходной массив так, что его левая частьL"" представлена правой частьюR" входного, а праваяR"" формируется как суммаL" иR" операцийXOR. Далее, выходной массив шифруется перестановкой с заменой. Можно убедиться, что все проведенные операции могут быть обращены и расшифровывание осуществляется за число операций, линейно зависящее от размера блока. Схематично алгоритм представлен на рис. 9.4.

Рис. 9.4. Схема алгоритма DES

После нескольких таких преобразований можно считать, что каждый бит выходного блока шифровки может зависеть от каждого бита сообщения.

В России есть аналог алгоритма DES, работающий по тому же принципу секретного ключа. ГОСТ 28147 разработан на 12 лет позже DES и имеет более высокую степень защиты. Их сравнительные характеристики представлены в табл. 9.3.

Таблица 9.3

9.6.7. Стеганография. Стеганография – это метод организации связи, который собственно скрывает само наличие связи. В отличие от криптографии, где неприятель точно может определить является ли передаваемое сообщение зашифрованным текстом, методы стеганографии позволяют встраивать секретные сообщения в безобидные послания так, чтобы невозможно было заподозрить существование встроенного тайного послания.

Слово «стеганография» в переводе с греческого буквально означает «тайнопись» (steganos – секрет, тайна; graphy – запись). К ней относится огромное множество секретных средств связи, таких как невидимые чернила, микрофотоснимки, условное расположение знаков, тайные каналы и средства связи на плавающих частотах и т.д.

Стеганография занимает свою нишу в обеспечении безопасности: она не заменяет, а дополняет криптографию. Сокрытие сообщения методами стеганографии значительно снижает вероятность обнаружения самого факта передачи сообщения. А если это сообщение к тому же зашифровано, то оно имеет еще один, дополнительный, уровень защиты.

В настоящее время в связи с бурным развитием вычислительной техники и новых каналов передачи информации появились новые стеганографические методы, в основе которых лежат особенности представления информации в компьютерных файлах, вычислительных сетях и т. п. Это дает нам возможность говорить о становлении нового направления – компьютерной стеганографии.

Несмотря на то, что стеганография как способ сокрытия секретных данных известна уже на протяжении тысячелетий, компьютерная стеганография – молодое и развивающееся направление.

Стеганографическая система или стегосистема – совокупность средств и методов, которые используются для формирования скрытого канала передачи информации.

При построении стегосистемы должны учитываться следующие положения:

    Противник имеет полное представление о стеганографической системе и деталях ее реализации. Единственной информацией, которая остается неизвестной потенциальному противнику, является ключ, с помощью которого только его держатель может установить факт присутствия и содержание скрытого сообщения.

    Если противник каким-то образом узнает о факте существования скрытого сообщения, это не должно позволить ему извлечь подобные сообщения в других данных до тех пор, пока ключ хранится в тайне.

    Потенциальный противник должен быть лишен каких-либо технических и иных преимуществ в распознавании или раскрытии содержания тайных сообщений.

Обобщенная модель стегосистемы представлена на рис. 9.5.

Рис. 9.5. Обобщенная модель стегосистемы

В качестве данных может использоваться любая информация: текст, сообщение, изображение и т. п.

В общем же случае целесообразно использовать слово «сообщение», так как сообщением может быть как текст или изображение, так и, например, аудиоданные. Далее для обозначения скрываемой информации будем использовать именно термин сообщение.

Контейнер – любая информация, предназначенная для сокрытия тайных сообщений.

Стегоключ или просто ключ – секретный ключ, необходимый для сокрытия информации. В зависимости от количества уровней защиты (например, встраивание предварительно зашифрованного сообщения) в стегосистеме может быть один или несколько стегоключей.

По аналогии с криптографией, по типу стегоключа стегосистемы можно подразделить на два типа:

с секретным ключом;

с открытым ключом.

В стегосистеме с секретным ключом используется один ключ, который должен быть определен либо до начала обмена секретными сообщениями, либо передан по защищенному каналу.

В стегосистеме с открытым ключом для встраивания и извлечения сообщения используются разные ключи, которые различаются таким образом, что с помощью вычислений невозможно вывести один ключ из другого. Поэтому один ключ (открытый) может передаваться свободно по незащищенному каналу связи. Кроме того, данная схема хорошо работает и при взаимном недоверии отправителя и получателя.

В настоящее время можно выделить три тесно связанных между собой и имеющих одни корни направления приложения стеганографии:сокрытие данных (сообщений),цифровые водяные знаки изаголовки .

Сокрытие внедряемых данных , которые в большинстве случаев имеют большой объем, предъявляет серьезные требования к контейнеру: размер контейнера в несколько раз должен превышать размер встраиваемых данных.

Цифровые водяные знаки используются для защиты авторских или имущественных прав на цифровые изображения, фотографии или другие оцифрованные произведения искусства. Основными требованиями, которые предъявляются к таким встроенным данным, являются надежность и устойчивость к искажениям. Цифровые водяные знаки имеют небольшой объем, однако, с учетом указанных выше требований, для их встраивания используются более сложные методы, чем для встраивания просто сообщений или заголовков.

Заголовки используются в основном для маркирования изображений в больших электронных хранилищах (библиотеках) цифровых изображений, аудио- и видеофайлов. В данном случае стеганографические методы используются не только для внедрения идентифицирующего заголовка, но и иных индивидуальных признаков файла. Внедряемые заголовки имеют небольшой объем, а предъявляемые к ним требования минимальны: заголовки должны вносить незначительные искажения и быть устойчивы к основным геометрическим преобразованиям.

Компьютерная тайнопись основывается на нескольких принципах:

    Сообщение можно послать, используя шумовое кодирование. Оно будет трудно определимо на фоне аппаратных шумов в телефонной линии или сетевых кабелях.

    Сообщение можно поместить в пустоты файлов или диска без потери их функциональности. Исполнимые файлы имеют многосегментную структуру исполнимого кода, между пустотами сегментов можно вставить кучу байт. Так прячет свое тело вирус WinCIH. Файл всегда занимает целое число кластеров на диске, поэтому физическая и логическая длина файла редко совпадают. В этот промежуток тоже можно записать что-нибудь. Можно отформатировать промежуточную дорожку диска и поместить на нее сообщение. Есть способ проще, который состоит в том, что в конец строки HTML или текстового файла можно добавить определенное количество пробелов, несущих информационную нагрузку.

    Органы чувств человека неспособны различить малые изменения в цвете, изображении или звуке. Это применяют к данным, несущим избыточную информацию. Например, 16-битный звук или 24-битное изображение. Изменение значений битов, отвечающих за цвет пикселя, не приведет к заметному изменению цвета. Сюда же можно отнести метод скрытых гарнитур шрифтов. Делаются малозаметные искажения в очертаниях букв, которые будут нести смысловую нагрузку. В документ Microsoft Word можно вставить похожие символы, содержащие скрытое послание.

Самый распространенный и один из самых лучших программных продуктов для стеганографии – это S-Tools (статус freeware). Он позволяет прятать любые файлы в файлы форматов GIF, BMP и WAV. Осуществляет регулируемое сжатие (архивирование) данных. Кроме того, производит шифрацию с использованием алгоритмов MCD, DES, тройной-DES, IDEA (по выбору). Графический файл остается без видимых изменений, только изменяются оттенки. Звук тоже остается без заметных изменений. Даже при возникновении подозрений невозможно установить факт применения S-Tools, не зная пароля.

9.6.8. Сертификация и стандартизация криптосистем. Все государства уделяют пристальное внимание вопросам криптографии. Наблюдаются постоянные попытки наложить некие рамки, запреты и прочие ограничения на производство, использование и экспорт криптографических средств. Например, в России лицензируется ввоз и вывоз средств защиты информации, в частности, криптографических средств, согласно Указу Президента Российской Федерации от 3 апреля 1995 г. № 334 и постановлению Правительства Российской Федерации от 15 апреля 1994 г. № 331.

Как уже было сказано, криптосистема не может считаться надёжной, если не известен полностью алгоритм её работы. Только зная алгоритм, можно проверить, устойчива ли защита. Однако проверить это может лишь специалист, да и то зачастую такая проверка настолько сложна, что бывает экономически нецелесообразна. Как же обычному пользователю, не владеющему математикой, убедиться в надёжности криптосистемы, которой ему предлагают воспользоваться?

Для неспециалиста доказательством надёжности может служить мнение компетентных независимых экспертов. Отсюда возникла система сертификации. Ей подлежат все системы защиты информации, чтобы ими могли официально пользоваться предприятия и учреждения. Использовать несертифицированные системы не запрещено, но в таком случае вы принимаете на себя весь риск, что она окажется недостаточно надёжной или будет иметь «чёрные ходы». Но чтобы продавать средства информационной защиты, сертификация необходима. Такие положения действуют в России и в большинстве стран.

У нас единственным органом, уполномоченным проводить сертификацию, является Федеральное агентство правительственной связи и информации при Президенте Российской Федерации (ФАПСИ). Орган этот подходит к вопросам сертификации очень тщательно. Совсем мало разработок сторонних фирм смогли получить сертификат ФАПСИ.

Кроме того, ФАПСИ лицензирует деятельность предприятий, связанную с разработкой, производством, реализацией и эксплуатацией шифровальных средств, а также защищенных технических средств хранения, обработки и передачи информации, предоставлением услуг в области шифрования информации (Указ Президента РФ от 03.04.95 № 334 «О мерах по соблюдению законности в области разработки производства, реализации и эксплуатации шифровальных средств, а также предоставления услуг в области шифрования информации»; и Закон РФ «О федеральных органах правительственной связи и информации»).

Для сертификации необходимым условием является соблюдение стандартов при разработке систем защиты информации. Стандарты выполняют сходную функцию. Они позволяют, не проводя сложных, дорогостоящих и даже не всегда возможных исследований, получить уверенность, что данный алгоритм обеспечивает защиту достаточной степени надёжности.

9.6.9. Шифрованные архивы. Многие прикладные программы включают функцию шифрования. Приведем примеры некоторых программных средств, обладающих возможностями шифровки.

Программы-архиваторы (например, WinZip) имеют опцию шифровки архивируемой информации. Ею можно пользоваться для не слишком важной информации. Во-первых, используемые там методы шифровки не слишком надёжны (подчиняются официальным экспортным ограничениям), во-вторых, детально не описаны. Всё это не позволяет всерьёз рассчитывать на такую защиту. Архивы с паролем можно использовать только для "обычных" пользователей или некритичной информации.

На некоторых сайтах в интернете вы можете найти программы для вскрытия зашифрованных архивов. Например, архив ZIP вскрывается на хорошем компьютере за несколько минут, при этом от пользователя не требуется никакой особой квалификации.

Примечание. Программы для подбора паролей: Ultra Zip Password Cracker 1.00 – Быстродействующая программа для подбора паролей к зашифрованным архивам. Русский/английский интерфейс. Win"95/98/NT. (Разработчик – «m53group»). Advanced ZIP Password Recovery 2.2 – Мощная программа для подбора паролей к ZIP-архивам. Высокая скорость работы, графический интерфейс, дополнительные функции. ОС: Windows95/98/NT. Фирма-разработчик – «ElcomLtd.»,shareware.

Шифровка в MS Word и MS Excel . Фирма Microsoft включила в свои продукты некоторое подобие криптозащиты. Но эта защита весьма нестойка. К тому же, алгоритм шифровки не описан, что является показателем ненадёжности. Кроме того, имеются данные, что Microsoft оставляет в используемых криптоалгоритмах «чёрный ход». Если необходимо расшифровать файл, пароль к которому утрачен, можно обратиться в фирму. По официальному запросу, при достаточных основаниях они проводят расшифровку файлов MS Word и MS Excel. Так, кстати, поступают и некоторые другие производители программного обеспечения.

Шифрованные диски (каталоги) . Шифровка – достаточно надёжный метод защиты информации на жёстком диске. Однако если количество закрываемой информации не исчерпывается двумя-тремя файлами, то с ней работать достаточно сложно: каждый раз нужно будет файлы расшифровывать, а после редактирования – зашифровывать обратно. При этом на диске могут остаться страховочные копии файлов, которые создают многие редакторы. Поэтому удобно использовать специальные программы (драйверы), которые автоматически зашифровывают и расшифровывают всю информацию при записи её на диск и чтении с диска.

В заключение отметим, что политика безопасности определяется как совокупность документированных управленческих решений, направленных на защиту информации и ассоциированных с ней ресурсов. При разработке и проведении ее в жизнь целесообразно руководствоваться следующими основными принципами:

    Невозможность миновать защитные средства . Все информационные потоки в защищаемую сеть и из нее должны проходить через средства защиты. Не должно быть тайных модемных входов или тестовых линий, идущих в обход защиты.

    Усиление самого слабого звена . Надежность любой защиты определяется самым слабым звеном, так как злоумышленники взламывают именно его. Часто самым слабым звеном оказывается не компьютер или программа, а человек, и тогда проблема обеспечения информационной безопасности приобретает нетехнический характер.

    Невозможность перехода в небезопасное состояние . Принцип невозможности перехода в небезопасное состояние означает, что при любых обстоятельствах, в том числе нештатных, защитное средство либо полностью выполняет свои функции, либо полностью блокирует доступ.

    Минимизация привилегий . Принцип минимизации привилегий предписывает выделять пользователям и администраторам только те права доступа, которые необходимы им для выполнения служебных обязанностей.

    Разделение обязанностей . Принцип разделения обязанностей предполагает такое распределение ролей и ответственности, при котором один человек не может нарушить критически важный для организации процесс.

    Эшелонированность обороны . Принцип эшелонированности обороны предписывает не полагаться на один защитный рубеж. Эшелонированная оборона способна по крайней мере задержать злоумышленника и существенно затруднить незаметное выполнение вредоносных действий.

    Разнообразие защитных средств . Принцип разнообразия защитных средств рекомендует организовывать различные по своему характеру оборонительные рубежи, чтобы от потенциального злоумышленника требовалось овладение разнообразными, по возможности, несовместимыми между собой навыками.

    Простота и управляемость информационной системы . Принцип простоты и управляемости гласит, что только в простой и управляемой системе можно проверить согласованность конфигурации разных компонентов и осуществить централизованное администрирование.

    Обеспечение всеобщей поддержки мер безопасности . Принцип всеобщей поддержки мер безопасности носит нетехнический характер. Если пользователи и/или системные администраторы считают информационную безопасность чем-то излишним или враждебным, то режим безопасности сформировать заведомо не удастся. Следует с самого начала предусмотреть комплекс мер, направленный на обеспечение лояльности персонала, на постоянное теоретическое и практическое обучение.

Криптографические методы защиты информации могут быть реализованы как программными, так и аппаратными средствами. Аппаратный шифратор или устройство криптографической защиты данных (УКЗД) представляет собой, чаще всего, плату расширения, вставляемую в разъем 18А или РС1 системной платы персонального компьютера (ПК) (рис. 3.21). Существуют и другие варианты реализации, например, в виде и8В-ключа с криптографическими функциями (рис. 3.22).

Производители аппаратных шифраторов обычно оснащают их различными дополнительными возможностями, среди которых:

Генерация случайных чисел, необходимых для получения криптографических ключей. Кроме того, многие криптографические алгоритмы используют их и для других целей, например, в алгоритме электронной цифровой подписи, ГОСТ Р 34.10-2001 при каждом вычислении подписи необходимо новое случайное число;

Рис. 3.21. Аппаратный шифратор в виде платы РС1:

1 - технологические разъемы; 2 - память для ведения журнала; 3 - переключатели режимов; 4 - многофункциональная память; 5 - блок управления и микропроцессор; 6- интерфейс РС1; 7- контроллер РС1; 8- ДСЧ; 9- интерфейсы для подключения ключевых носителей

Рис. 3.22.

  • контроль входа на компьютер. При включении ПК устройство требует от пользователя ввести персональную информацию (например, вставить устройство с закрытым ключом). Загрузка операционной системы будет разрешена только после того, как устройство опознает предъявленные ключи и сочтет их «своими». В противном случае придется вскрыть системный блок и изъять оттуда шифратор, чтобы загрузить операционную систему (однако информация на жестком диске ПК тоже может быть зашифрована);
  • контроль целостности файлов операционной системы для предотвращения злоумышленного изменения конфигурационных файлов и системных программ. Шифратор хранит в себе список всех важных файлов с заранее вычисленными для каждого из них контрольными хеш-значениями и, если при следующей загрузке ОС не совпадет с эталоном хеш-значение хотя бы одного из контролируемых файлов, компьютер будет блокирован.

Шифратор, выполняющий контроль входа на ПК и проверяющий целостность операционной системы, называют также «электронным замком» (см. парагр. 1.3).

На рис. 3.23 приведена типовая структура аппаратного шифратора. Рассмотрим функции его основных блоков:

  • блок управления - основной модуль шифратора. Обычно реализуется на базе микроконтроллера, при выборе которого главным является быстродействие и достаточное количество внутренних ресурсов, а также внешних портов для подключения всех необходимых модулей;
  • контроллер системной шины ПК (например, РС1), через который осуществляется основной обмен данными между УКЗД и компьютером;
  • энергонезависимое запоминающее устройство (ЗУ), реализуемое обычно на базе микросхем флэш-памяти. Оно должно быть достаточно емким (несколько мегабайт) и допускать большое число циклов записи. Здесь размещается программное обеспечение микроконтроллера, которое вы-

Рис. 3.23. Структура УКЗД полняется при инициализации устройства (когда шифратор перехватывает управление при загрузке компьютера);

  • память журнала аудита, также представляющая собой энергонезависимое ЗУ (во избежание возможных коллизий память для программ и память для журнала не должны объединяться);
  • шифропроцессор (или несколько подобных блоков) - специализированная микросхема или микросхема программируемой логики PLD (Programmable Logic Device), обеспечивающая выполнение криптографических операций (шифрование и расшифрование, вычисление и проверка ЭЦП, хэширование);
  • генератор случайных чисел, представляющий собой устройство, выдающее статистически случайный и непредсказуемый сигнал (так называемый белый шум). Это может быть, например, шумовой диод. Перед дальнейшим использованием в шифропроцессоре по специальным правилам белый шум преобразуется в цифровую форму;
  • блок ввода ключевой информации. Обеспечивает защищенное получение закрытых ключей с ключевого носителя и ввод идентификационной информации о пользователе, необходимой для его аутентификации;
  • блок коммутаторов, необходимых для отключения возможности работы с внешними устройствами (дисководами, CD- ROM, параллельным и последовательным портами, шиной USB и т. д.). Если пользователь работает с особо секретной информацией, УКЗД при входе на компьютер заблокирует все внешние устройства, включая даже сетевую карту.

Криптографические операции в УКЗД должны выполняться так, чтобы исключить несанкционированный доступ к сеансовым и закрытым ключам и возможность воздействия на результаты их выполнения. Поэтому шифропроцессор логически состоит из нескольких блоков (рис. 3.24):

  • вычислитель - набор регистров, сумматоров, блоков подстановки ит. п., связанных между собой шинами передачи данных. Предназначен для максимально быстрого выполнения криптографических операций. На вход вычислитель получает открытые данные, которые следует зашифровать (расшифровать) или подписать, и криптографический ключ;
  • блок управления - аппаратно реализованная программа, управляющая вычислителем. Если по какой-либо причине

Рис. 3.24.

программа изменится, его работа начнет давать сбои. Поэтому данная программа должна не только надежно храниться и устойчиво функционировать, но и регулярно проверять свою целостность. Описанный выше внешний блок управления тоже периодически посылает блоку управления контрольные задачи. На практике для большей уверенности в шифраторе устанавливают два шифропроцессора, которые постоянно сравнивают результаты своих криптографических операций (если они не совпадают, операция повторяется);

Буфер ввода-вывода необходим для повышения производительности устройства: пока шифруется первый блок данных, загружается следующий и т. д. То же самое происходит и на выходе. Такая конвейерная передача данных серьезно увеличивает скорость выполнения криптографических операций в шифраторе.

Есть еще одна задача обеспечения безопасности при выполнении шифратором криптографических операций: загрузка ключей в шифратор, минуя оперативную память компьютера, где их теоретически можно перехватить и даже имея подменить. Для этого УКЗД дополнительно содержит порты ввода-вывода (например, СОМ или USB), к которым напрямую подключаются разные устройства чтения ключевых носителей. Это могут быть любые смарт-карты, токены (специальные USB-ключи) или элементы Touch Memory (см. парагр. 1.3). Помимо прямого ввода ключей в УКЗД, многие из таких носителей обеспечивают и их надежное хранение - даже ключевой носитель без знания специального кода доступа (например, PIN-кода) нарушитель не сможет прочесть его содержимое.

Для того чтобы не возникало коллизий при одновременном обращении к шифратору разных программ, в компьютерной системе устанавливается специальное программное обеспечение


Рис. 3.25.

  • (ПО) управления шифратором (рис. 3.25). Такое ПО выдает команды через драйвер шифратора и передает шифратору данные, следя за тем, чтобы потоки информации от разных источников не пересекались, а также за тем, чтобы в шифраторе всегда находились нужные ключи. Таким образом, УКЗД выполняет два принципиально разных вида команд:
  • перед загрузкой операционной системы выполняются команды, находящиеся в памяти шифратора, которые осуществляют все необходимые проверки (например, идентификацию и аутентификацию пользователя) и устанавливают требуемый уровень безопасности (например, отключают внешние устройства);
  • после загрузки ОС (например, Vindows) выполняются команды, поступающие через ПО управления шифратором (шифровать данные, перезагружать ключи, вычислять случайные числа и т. д.).

Такое разделение необходимо из соображений безопасности - после выполнения команд первого блока, которые нельзя обойти, нарушитель уже не сможет совершить несанкционированные действия.

Еще одно назначение ПО управления шифратором - обеспечить возможность замены одного шифратора на другой (скажем, на более производительный или реализующий другие криптоалгоритмы), не меняя программного обеспечения. Это происходит аналогично, например, смене сетевой карты: шифратор поставляется вместе с драйвером, который позволяет программам выполнять стандартный набор криптографических функций в соответствии с каким-либо интерфейсом прикладного программирования (например, Сгур1оАР1).

Таким же образом можно заменить аппаратный шифратор на программный (например, на эмулятор шифратора). Для этого программный шифратор выполняют обычно в виде драйвера, предоставляющего тот же набор функций.

Впрочем, ПО управления шифратором нужно не всем УКЗД (в частности, шифратор для «прозрачного» шифрования-расшифрования всего жесткого диска ПК достаточно настроить один раз).

Для дополнительного обеспечения безопасности выполнения криптографических операций в УКЗД может применяться многоуровневая защита криптографических ключей симметричного шифрования, при которой случайный сеансовый ключ шифруется долговременным ключом пользователя, а тот, в свою очередь, главным ключом (рис. 3.26).

На этапе начальной загрузки в ключевую ячейку № 3 ЗУ шифратора заносится главный ключ. Но для трехуровневого шифрования необходимо получить еще два. Сеансовый ключ генерируется в результате запроса к генератору (датчику) случай-

Рис. 3.26. Шифрование файла с помощью УКЗД ных чисел (ДСЧ) шифратора на получение случайного числа, которое загружается в ключевую ячейку № 1, соответствующую сеансовому ключу. С его помощью шифруется содержимое файла и создается новый файл, хранящий зашифрованную информацию.

Далее у пользователя запрашивается долговременный ключ, который загружается в ключевую ячейку № 2 с расшифровкой посредством главного ключа, находящегося в ячейке № 3. Надежный шифратор должен иметь режим расшифровки одного ключа с помощью другого внутри шифропроцессора; в этом случае ключ в открытом виде вообще никогда «не покидает» шифратора. И наконец, сеансовый ключ зашифровывается с помощью долговременного ключа, находящегося в ячейке № 2, выгружается из шифратора и записывается в заголовок зашифрованного файла.

При расшифровке файла сначала с помощью долговременного ключа пользователя расшифровывается сеансовый ключ, а затем с его помощью восстанавливается информация.

В принципе можно использовать для шифрования и один ключ, но многоключевая схема имеет серьезные преимущества. Во-первых, снижается возможность атаки на долговременный ключ, так как он используется только для шифрования коротких сеансовых ключей. А это усложняет нарушителю криптоанализ зашифрованной информации с целью получения долговременного ключа. Во-вторых, при смене долговременного ключа можно очень быстро заново зашифровать файл: достаточно заново зашифровать сеансовый ключ со старого долговременного на новый. В-третьих, разгружается ключевой носитель, так как на нем хранится только главный ключ, а все долговременные ключи (а их может быть у пользователя несколько для различных целей) могут храниться в зашифрованном с помощью главного ключа виде даже на жестком диске ПК.

Шифраторы в виде ШВ-ключей (см. рис. 3.22) пока не могут стать полноценной заменой аппаратному шифратору для шины РС1 из-за низкой скорости шифрования. Однако у них есть несколько интересных особенностей. Во-первых, токен (ШВ-ключ) представляет собой не только аппаратный шифратор, но и носитель ключей шифрования, т. е. устройство «два в одном». Во-вторых, токены обычно соответствуют распространенным международным криптографическим стандартам (РКСБ #11, 1БО 7816, РС/8С и т. д.), и их можно использовать без дополнительной настройки в уже существующих программных средствах защиты информации (например, с их помощью можно проводить аутентификацию пользователей в ОС семейства Microsoft Windows). И наконец, цена такого шифратора в десятки раз ниже, чем классического аппаратного шифратора для шины PCI.

Определение 1

Криптографическая защита информации – это механизм защиты посредством шифрования данных для обеспечения информационной безопасности общества.

Криптографические методы защиты информации активно используются в современной жизни для хранения, обработки и передачи информации по сетям связи и на различных носителях.

Сущность и цели криптографической защиты информации

Сегодня самым надежным способом шифрования при передаче информационных данных на большие расстояния является именно криптографическая защита информации.

Криптография – это наука, изучающая и описывающая модели информационной безопасности (далее – ИБ) данных. Она позволяет разрешить многие проблемы, что присущи информационной безопасности сети: конфиденциальность, аутентификация, контроль и целостность взаимодействующих участников.

Определение 2

Шифрование – это преобразование информационных данных в форму, которая будет не читабельной для программных комплексов и человека без ключа шифрования-расшифровки. Благодаря криптографическим методам защиты информации обеспечиваются средства информационной безопасности, поэтому они являются основной частью концепции ИБ.

Замечание 1

Ключевой целью криптографической защиты информации является обеспечение конфиденциальности и защиты информационных данных компьютерных сетей в процессе передачи ее по сети между пользователями системы.

Защита конфиденциальной информации, которая основана на криптографической защите, зашифровывает информационные данные посредством обратимых преобразований, каждое из которых описывается ключом и порядком, что определяет очередность их применения.

Важным компонентом криптографической защиты информации является ключ, отвечающий за выбор преобразования и порядок его реализации.

Определение 3

Ключ – это определенная последовательность символов, которая настраивает шифрующий и дешифрующий алгоритм системы криптозащиты информации. Каждое преобразование определяется ключом, задающим криптографический алгоритм, который обеспечивает безопасность информационной системы и информации в целом.

Каждый алгоритм криптозащиты информации работает в разных режимах, которые обладают, как рядом преимуществ, так и рядом недостатков, что влияют на надежность информационной безопасности государства и средства ИБ.

Средства и методы криптографической защиты информации

К основным средствам криптозащиты информации можно отнести программные, аппаратные и программно-аппаратные средства, которые реализуют криптографические алгоритмы информации с целью:

  • защиты информационных данных при их обработке, использовании и передаче;
  • обеспечения целостности и достоверности обеспечения информации при ее хранении, обработке и передаче (в том числе с применением алгоритмов цифровой подписи);
  • выработки информации, которая используется для аутентификации и идентификации субъектов, пользователей и устройств;
  • выработки информации, которая используется для защиты аутентифицирующих элементов при их хранении, выработке, обработке и передаче.

В настоящее время криптографические методы защиты информации для обеспечения надежной аутентификации сторон информационного обмена являются базовыми. Они предусматривают шифрование и кодирование информации.

Различают два основных метода криптографической защиты информации:

  • симметричный, в котором один и тот же ключ, что хранится в секрете, применяется и для шифровки, и для расшифровки данных;
  • ассиметричный.

Кроме этого существуют весьма эффективные методы симметричного шифрования – быстрый и надежный. На подобные методы в Российской Федерации предусмотрен государственный стандарт «Системы обработки информации. Криптографическая защита информации. Алгоритм криптографического преобразования» - ГОСТ 28147-89.

В ассиметричных методах криптографической защиты информации используются два ключа:

  1. Несекретный, который может публиковаться вместе с другими сведениями о пользователе, что являются открытыми. Этот ключ применяется для шифрования.
  2. Секретный, который известен только получателю, используется для расшифровки.

Из ассиметричных наиболее известным методом криптографической защиты информации является метод RSA, который основан на операциях с большими (100-значными) простыми числами, а также их произведениями.

Благодаря применению криптографических методов можно надежно контролировать целостность отдельных порций информационных данных и их наборов, гарантировать невозможность отказаться от совершенных действий, а также определять подлинность источников данных.

Основу криптографического контроля целостности составляют два понятия:

  1. Электронная подпись.
  2. Хэш-функция.

Определение 4

Хэш-функция – это одностороння функция или преобразование данных, которое сложно обратить, реализуемое средствами симметричного шифрования посредством связывания блоков. Результат шифрования последнего блока, который зависит от всех предыдущих, и служит результатом хэш-функции.

В коммерческой деятельности криптографическая защита информации приобретает все большее значение. Для того чтобы преобразовать информацию, используются разнообразные шифровальные средства: средства шифрования документации (в том числе для портативного исполнения), средства шифрования телефонных разговоров и радиопереговоров, а также средства шифрования передачи данных и телеграфных сообщений.

Для того чтобы защитить коммерческую тайну на отечественном и международном рынке, используются комплекты профессиональной аппаратуры шифрования и технические устройства криптозащиты телефонных и радиопереговоров, а также деловой переписки.

Кроме этого широкое распространение получили также маскираторы и скремблеры, которые заменяют речевой сигнал цифровой передачей данных. Производятся криптографические средства защиты факсов, телексов и телетайпов. Для этих же целей применяются и шифраторы, которые выполняются в виде приставок к аппаратам, в виде отдельных устройств, а также в виде устройств, которые встраиваются в конструкцию факс-модемов, телефонов и других аппаратов связи. Электронная цифровая подпись широкое применяется для того, чтобы обеспечить достоверность передаваемых электронных сообщений.

Криптографическая защита информации в РФ решает вопрос целостности посредством добавления определенной контрольной суммы или проверочной комбинации для того, чтобы вычислить целостность данных. Модель информационной безопасности является криптографической, то есть она зависит от ключа. По оценкам информационной безопасности, которая основана на криптографии, зависимость вероятности прочтения данных от секретного ключа является самым надежным инструментом и даже используется в системах государственной информационной безопасности.

П роблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии — ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры.

К риптографические методы защиты информации — это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным без предъявления ключа криптограммы и обратного преобразования. Криптографический метод защиты, безусловно, самый надежный метод защиты, так как охраняется непосредственно сама информация, а не доступ к ней (например, зашифрованный файл нельзя прочесть даже в случае кражи носителя). Данный метод защиты реализуется в виде программ или пакетов программ.

Современная криптография включает в себя четыре крупных раздела:

    Симметричные криптосистемы . В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. (Шифрование — преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом, дешифрование — обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный);

    Криптосистемы с открытым ключом . В системах с открытым ключом используются два ключа — открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.(Ключ — информация, необходимая для беспрепятственного шифрования и дешифрования текстов.);

    Электронная подпись . Системой электронной подписи. называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

    Управление ключами . Это процесс системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

О сновные направления использования криптографических методов — передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Требования к криптосистемам

П роцесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании. Для современных криптографических систем защиты информации сформулированы следующие общепринятые требования:

    зашифрованное сообщение должно поддаваться чтению только при наличии ключа;

    число операций, необходимых для определения использованного ключа шифрования по фрагменту шифрованного сообщения и соответствующего ему открытого текста, должно быть не меньше общего числа возможных ключей;

    число операций, необходимых для расшифровывания информации путем перебора всевозможных ключей должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможности использования сетевых вычислений);

    знание алгоритма шифрования не должно влиять на надежность защиты;

    незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения даже при использовании одного и того же ключа;

    структурные элементы алгоритма шифрования должны быть неизменными;

    дополнительные биты, вводимые в сообщение в процессе шифрования, должен быть полностью и надежно скрыты в шифрованном тексте;

    длина шифрованного текста должна быть равной длине исходного текста;

    не должно быть простых и легко устанавливаемых зависимостью между ключами, последовательно используемыми в процессе шифрования;

    любой ключ из множества возможных должен обеспечивать надежную защиту информации;

    алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.

Симметричные криптосистемы

В се многообразие существующих криптографических методов в симметричных криптосистемах можно свести к следующим 4 классам преобразований:

    подстановка — символы шифруемого текста заменяются символами того же или другого алфавита в соответствии с заранее определенным правилом;

    перестановка — символы шифруемого текста переставляются по некоторому правилу в пределах заданного блока передаваемого текста;

    аналитическое преобразование — шифруемый текст преобразуется по некоторому аналитическому правилу, например гаммирование — заключается в наложении на исходный текст некоторой псевдослучайной последовательности, генерируемой на основе ключа;

    комбинированное преобразование — представляют собой последовательность (с возможным повторением и чередованием) основных методов преобразования, применяемую к блоку (части) шифруемого текста. Блочные шифры на практике встречаются чаще, чем “чистые” преобразования того или иного класса в силу их более высокой криптостойкости. Российский и американский стандарты шифрования основаны именно на этом классе.

Системы с открытым ключом

К ак бы ни были сложны и надежны криптографические системы — их слабое мест при практической реализации — проблема распределения ключей. Для того, чтобы был возможен обмен конфиденциальной информацией между двумя субъектами ИС, ключ должен быть сгенерирован одним из них, а затем каким-то образом опять же в конфиденциальном порядке передан другому. Т.е. в общем случае для передачи ключа опять же требуется использование какой-то криптосистемы. Для решения этой проблемы на основе результатов, полученных классической и современной алгеброй, были предложены системы с открытым ключом. Суть их состоит в том, что каждым адресатом ИС генерируются два ключа, связанные между собой по определенному правилу. Один ключ объявляется открытым, а другой закрытым. Открытый ключ публикуется и доступен любому, кто желает послать сообщение адресату. Секретный ключ сохраняется в тайне. Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст в принципе не может быть расшифрован тем же открытым ключом. Дешифрование сообщения возможно только с использованием закрытого ключа, который известен только самому адресату. Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают следующим свойством: при заданном значении x относительно просто вычислить значение f(x), однако если y=f(x), то нет простого пути для вычисления значения x. Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом. Однако не всякая необратимая функция годится для использования в реальных ИС. В самом определении необратимости присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение используя современные вычислительные средства за обозримый интервал времени. Поэтому чтобы гарантировать надежную защиту информации, к системам с открытым ключом (СОК) предъявляются два важных и очевидных требования:

  1. Преобразование исходного текста должно быть необратимым и исключать его восстановление на основе открытого ключа.
  2. Определение закрытого ключа на основе открытого также должно быть невозможным на современном технологическом уровне. При этом желательна точная нижняя оценка сложности (количества операций) раскрытия шифра.

А лгоритмы шифрования с открытым ключом получили широкое распространение в современных информационных системах. Так, алгоритм RSA стал мировым стандартом де-факто для открытых систем. Вообще же все предлагаемые сегодня криптосистемы с открытым ключом опираются на один из следующих типов необратимых преобразований:

  • Разложение больших чисел на простые множители;
  • Вычисление логарифма в конечном поле;
  • Вычисление корней алгебраических уравнений.

З десь же следует отметить, что алгоритмы криптосистемы с открытым ключом (СОК) можно использовать в следующих назначениях:

  1. Как самостоятельные средства защиты передаваемых и хранимых данных.
  2. Как средства для распределения ключей.

А лгоритмы СОК более трудоемки, чем традиционные криптосистемы. Поэтому часто на практике рационально с помощью СОК распределять ключи, объем которых как информации незначителен. А потом с помощью обычных алгоритмов осуществлять обмен большими информационными потоками. Один из наиболее распространенных — система с открытым ключом — RSA. Криптосистема RSA, разработанная в 1977 году и получила название в честь ее создателей: Рона Ривеста, Ади Шамира и Леонарда Эйдельмана. Они воспользовались тем фактом, что нахождение больших простых чисел в вычислительном отношении осуществляется легко, но разложение на множители произведения двух таких чисел практически невыполнимо. Доказано (теорема Рабина), что раскрытие шифра RSA эквивалентно такому разложению. Поэтому для любой длины ключа можно дать нижнюю оценку числа операций для раскрытия шифра, а с учетом производительности современных компьютеров оценить и необходимое на это время. Возможность гарантированно оценить защищенность алгоритма RSA стала одной из причин популярности этой СОК на фоне десятков других схем. Поэтому алгоритм RSA используется в банковских компьютерных сетях, особенно для работы с удаленными клиентами (обслуживание кредитных карточек).

Электронная подпись

В чем состоит проблема аутентификации данных? В конце обычного письма или документа исполнитель или ответственное лицо обычно ставит свою подпись. Подобное действие обычно преследует две цели. Во-первых, получатель имеет возможность убедиться в истинности письма, сличив подпись с имеющимся у него образцом. Во-вторых, личная подпись является юридическим гарантом авторства документа. Последний аспект особенно важен при заключении разного рода торговых сделок, составлении доверенностей, обязательств и т.д. Если подделать подпись человека на бумаге весьма непросто, а установить авторство подписи современными криминалистическими методами — техническая деталь, то с подписью электронной дело обстоит иначе. Подделать цепочку битов, просто ее скопировав, или незаметно внести нелегальные исправления в документ сможет любой пользователь. С широким распространением в современном мире электронных форм документов (в том числе и конфиденциальных) и средств их обработки особо актуальной стала проблема установления подлинности и авторства безбумажной документации. В разделе криптографических систем с открытым ключом было показано, что при всех преимуществах современных систем шифрования они не позволяют обеспечить аутентификацию данных. Поэтому средства аутентификации должны использоваться в комплексе и криптографическими алгоритмами.

Управление ключами

К роме выбора подходящей для конкретной ИС криптографической системы, важная проблема — управление ключами. Как бы ни была сложна и надежна сама криптосистема, она основана на использовании ключей. Если для обеспечения конфиденциального обмена информацией между двумя пользователями процесс обмена ключами тривиален, то в ИС, где количество пользователей составляет десятки и сотни управление ключами — серьезная проблема. Под ключевой информацией понимается совокупность всех действующих в ИС ключей. Если не обеспечено достаточно надежное управление ключевой информацией, то завладев ею, злоумышленник получает неограниченный доступ ко всей информации. Управление ключами — информационный процесс, включающий в себя три элемента:

  • генерацию ключей;
  • накопление ключей;
  • распределение ключей.

Р ассмотрим, как они должны быть реализованы для того, чтобы обеспечить безопасность ключевой информации в ИС.

Генерация ключей

В самом начале разговора о криптографических методах было сказано, что не стоит использовать неслучайные ключи с целью легкости их запоминания. В серьезных ИС используются специальные аппаратные и программные методы генерации случайных ключей. Как правило используют датчики ПСЧ. Однако степень случайности их генерации должна быть достаточно высоким. Идеальным генераторами являются устройства на основе “натуральных” случайных процессов. Например случайным математическим объектом являются десятичные знаки иррациональных чисел, которые вычисляются с помощью стандартных математических методов.
5.3.5.2. Накопление ключей.

П од накоплением ключей понимается организация их хранения, учета и удаления. Поскольку ключ является самым привлекательным для злоумышленника объектом, открывающим ему путь к конфиденциальной информации, то вопросам накопления ключей следует уделять особое внимание. Секретные ключи никогда не должны записываться в явном виде на носителе, который может быть считан или скопирован. В достаточно сложной ИС один пользователь может работать с большим объемом ключевой информации, и иногда даже возникает необходимость организации мини-баз данных по ключевой информации. Такие базы данных отвечают за принятие, хранение, учет и удаление используемых ключей. Итак, каждая информация об используемых ключах должна храниться в зашифрованном виде. Ключи, зашифровывающие ключевую информацию называются мастер-ключами. Желательно, чтобы мастер-ключи каждый пользователь знал наизусть, и не хранил их вообще на каких-либо материальных носителях. Очень важным условием безопасности информации является периодическое обновление ключевой информации в ИС. При этом переназначаться должны как обычные ключи, так и мастер-ключи. В особо ответственных ИС обновление ключевой информации желательно делать ежедневно. Вопрос обновления ключевой информации связан и с третьим элементом управления ключами — распределением ключей.

Распределение ключей

Р аспределение ключей — самый ответственный процесс в управлении ключами. К нему предъявляются два требования:

  • Оперативность и точность распределения;
  • Скрытность распределяемых ключей.

В последнее время заметен сдвиг в сторону использования криптосистем с открытым ключом, в которых проблема распределения ключей отпадает. Тем не менее распределение ключевой информации в ИС требует новых эффективных решений. Распределение ключей между пользователями реализуются двумя разными подходами:

    Путем создания одного ли нескольких центров распределения ключей. Недостаток такого подхода состоит в том, что в центре распределения известно, кому и какие ключи назначены и это позволяет читать все сообщения, циркулирующие в ИС. Возможные злоупотребления существенно влияют на защиту.

    Прямой обмен ключами между пользователями информационной системы. В этом случае проблема состоит в том, чтобы надежно удостоверить подлинность субъектов. Для обмена ключами можно использовать криптосистемы с открытым ключом, используя тот же алгоритм RSA.

В качестве обобщения сказанного о распределении ключей следует сказать следующее. Задача управления ключами сводится к поиску такого протокола распределения ключей, который обеспечивал бы:

    возможность отказа от центра распределения ключей;

    взаимное подтверждение подлинности участников сеанса;

    подтверждение достоверности сеанса механизмом запроса-ответа, использование для этого программных или аппаратных средств;

    использование при обмене ключами минимального числа сообщений.

Реализация криптографических методов

П роблема реализации методов защиты информации имеет два аспекта:

    разработку средств, реализующих криптографические алгоритмы;

    методику использования этих средств.

К аждый из рассмотренных криптографических методов могут быть реализованы либо программным, либо аппаратным способом. Возможность программной реализации обуславливается тем, что все методы криптографического преобразования формальны и могут быть представлены в виде конечной алгоритмической процедуры. При аппаратной реализации все процедуры шифрования и дешифрования выполняются специальными электронными схемами. Наибольшее распространение получили модули, реализующие комбинированные методы. Большинство зарубежных серийных средств шифрования основано на американском стандарте DES. Отечественные же разработки, такие как, например, устройство КРИПТОН, использует отечественный стандарт шифрования. Основным достоинством программных методов реализации защиты является их гибкость, т.е. возможность быстрого изменения алгоритмов шифрования. Основным же недостатком программной реализации является существенно меньшее быстродействие по сравнению с аппаратными средствами (примерно в 10 раз). В последнее время стали появляться комбинированные средства шифрования, так называемые программно-аппаратные средства. В этом случае в компьютере используется своеобразный “криптографический сопроцессор” — вычислительное устройство, ориентированное на выполнение криптографических операций (сложение по модулю, сдвиг и т.д.). Меняя программное обеспечения для такого устройства, можно выбирать тот или иной метод шифрования. Такой метод объединяет в себе достоинства программных и аппаратных методов.

Т аким образом, выбор типа реализации криптозащиты для конкретной ИС в существенной мере зависит от ее особенностей и должен опираться на всесторонний анализ требований, предъявляемых к системе защиты информации.

Идентификация и аутентификация

И дентификацию и аутентификацию можно считать основой программно-технических средств безопасности. Идентификация и аутентификация — это первая линия обороны, «проходная» информационного пространства организации.

И дентификация позволяет субъекту — пользователю или процессу, действующему от имени определенного пользователя, назвать себя, сообщив свое имя. Посредством аутентификации вторая сторона убеждается, что субъект действительно тот, за кого себя выдает. В качестве синонима слова «аутентификация» иногда используют сочетание «проверка подлинности». Субъект может подтвердить свою подлинность, если предъявит по крайней мере одну из следующих сущностей:

  • нечто, что он знает: пароль, личный идентификационный номер, криптографический ключ и т.п.;
  • нечто, чем он владеет: личную карточку или иное устройство аналогичного назначения;
  • нечто, что является частью его самого: голос, отпечатки пальцев и т.п., то есть свои биометрические характеристики;
  • нечто, ассоциированное с ним, например координаты.

Г лавное достоинство парольной аутентификации — простота и привычность. Пароли давно встроены в операционные системы и иные сервисы. При правильном использовании пароли могут обеспечить приемлемый для многих организаций уровень безопасности. Тем не менее по совокупности характеристик их следует признать самым слабым средством проверки подлинности. Надежность паролей основывается на способности помнить их и хранить в тайне. Ввод пароля можно подсмотреть. Пароль можно угадать методом грубой силы, используя, быть может, словарь. Если файл паролей зашифрован, но доступен на чтение, его можно перекачать к себе на компьютер и попытаться подобрать пароль, запрограммировав полный перебор.

П ароли уязвимы по отношению к электронному перехвату — это наиболее принципиальный недостаток, который нельзя компенсировать улучшением администрирования или обучением пользователей. Практически единственный выход — использование криптографии для шифрования паролей перед передачей по линиям связи.

Т ем не менее, следующие меры позволяют значительно повысить надежность парольной защиты:

    наложение технических ограничений (пароль должен быть не слишком коротким, он должен содержать буквы, цифры, знаки пунктуации и т.п.);

    управление сроком действия паролей, их периодическая смена;

    ограничение доступа к файлу паролей;

    ограничение числа неудачных попыток входа в систему, что затруднит применение метода грубой силы;

    обучение и воспитание пользователей;

    использование программных генераторов паролей, которые, основываясь на несложных правилах, могут порождать только благозвучные и, следовательно, запоминающиеся пароли.

П еречисленные меры целесообразно применять всегда, даже если наряду с паролями используются другие методы аутентификации, основанные, например, на применении токенов.

Т окен — это предмет или устройство, владение которым подтверждает подлинность пользователя. Различают токены с памятью (пассивные, которые только хранят, но не обрабатывают информацию) и интеллектуальные токены (активные).

С амой распространенной разновидностью токенов с памятью являются карточки с магнитной полосой. Для использования подобных токенов необходимо устройство чтения, снабженное также клавиатурой и процессором. Обычно пользователь набирает на этой клавиатуре свой личный идентификационный номер, после чего процессор проверяет его совпадение с тем, что записано на карточке, а также подлинность самой карточки. Таким образом, здесь фактически применяется комбинация двух способов защиты, что существенно затрудняет действия злоумышленника.

Н еобходима обработка аутентификационной информации самим устройством чтения, без передачи в компьютер — это исключает возможность электронного перехвата.

И ногда (обычно для физического контроля доступа) карточки применяют сами по себе, без запроса личного идентификационного номера.

К ак известно, одним из самых мощных средств в руках злоумышленника является изменение программы аутентификации, при котором пароли не только проверяются, но и запоминаются для последующего несанкционированного использования.

И нтеллектуальные токены характеризуются наличием собственной вычислительной мощности. Они подразделяются на интеллектуальные карты, стандартизованные ISO и прочие токены. Карты нуждаются в интерфейсном устройстве, прочие токены обычно обладают ручным интерфейсом (дисплеем и клавиатурой) и по внешнему виду напоминают калькуляторы. Чтобы токен начал работать, пользователь должен ввести свой личный идентификационный номер.

П о принципу действия интеллектуальные токены можно разделить на следующие категории:

    Статический обмен паролями: пользователь обычным образом доказывает токену свою подлинность, затем токен проверяется компьютерной системой;

    Динамическая генерация паролей: токен генерирует пароли, периодически изменяя их. Компьютерная система должна иметь синхронизированный генератор паролей. Информация от токена поступает по электронному интерфейсу или набирается пользователем на клавиатуре терминала;

    Запросно-ответные системы: компьютер выдает случайное число, которое преобразуется криптографическим механизмом, встроенным в токен, после чего результат возвращается в компьютер для проверки. Здесь также возможно использование электронного или ручного интерфейса. В последнем случае пользователь читает запрос с экрана терминала, набирает его на клавиатуре токена (возможно, в это время вводится и личный номер), а на дисплее токена видит ответ и переносит его на клавиатуру терминала.

Управление доступом

С редства управления доступом позволяют специфицировать и контролировать действия, которые субъекты — пользователи и процессы могут выполнять над объектами — информацией и другими компьютерными ресурсами. Речь идет о логическом управлении доступом, который реализуется программными средствами. Логическое управление доступом — это основной механизм многопользовательских систем, призванный обеспечить конфиденциальность и целостность объектов и, до некоторой степени, их доступность путем запрещения обслуживания неавторизованных пользователей. Задача логического управления доступом состоит в том, чтобы для каждой пары (субъект, объект) определить множество допустимых операций, зависящее от некоторых дополнительных условий, и контролировать выполнение установленного порядка. Простой пример реализации таких прав доступа – какой-то пользователь (субъект) вошедший в информационную систему получил право доступа на чтение информации с какого-то диска(объект), право доступа на модификацию данных в каком-то каталоге(объект) и отсутствие всяких прав доступа к остальным ресурсам информационной системы.

К онтроль прав доступа производится разными компонентами программной среды — ядром операционной системы, дополнительными средствами безопасности, системой управления базами данных, посредническим программным обеспечением (таким как монитор транзакций) и т.д.

Протоколирование и аудит

П од протоколированием понимается сбор и накопление информации о событиях, происходящих в информационной системе. Например — кто и когда пытался входить в систему, чем завершилась эта попытка, кто и какими информациоными ресурсами пользовался, какие и кем модифицировались информационные ресурсы и много других.

А удит — это анализ накопленной информации, проводимый оперативно, почти в реальном времени, или периодически.

Р еализация протоколирования и аудита преследует следующие главные цели:

  • обеспечение подотчетности пользователей и администраторов;
  • обеспечение возможности реконструкции последовательности событий;
  • обнаружение попыток нарушений информационной безопасности;
  • предоставление информации для выявления и анализа проблем.
  1. Симметричное шифрование

Обычный подход – к документу применяется некий метод шифрования (ключ), после чего документ становится недоступен для чтения обычными средствами. Его может прочитать только тот, кто знает ключ (т.е. может применить адекватный метод). Аналогично происходит шифрование и ответного сообщения. Если в процессе обмена информацией для шифрования и чтения пользуются одним и тем же ключом, то такой криптографический процесс является симметричным.

Проблема – перед обменом надо выполнить передачу ключа.

  1. Несимметричное шифрование

Используется не один, а два ключа. Компания для работы с клиентом создает два ключа: один – открытый (публичный) ключ, а другой – закрытый (личный) ключ. На самом деле это две «половинки» одного целого ключа, связанные друг с другом.

Ключи устроены так, что сообщение, зашифрованное одной половинкой, можно расшифровать только другой половинкой (не той, которой оно было закодировано).

Публичный ключ распространяется для широкого пользователя, закрытый (личный ключ) надежно хранится.

Ключ – это некая кодовая последовательность.

Проблема – можно реконструировать закрытый ключ.

Принцип достаточности защиты:

Он предполагает, что защита не абсолютна, и приемы ее снятия известны, но она все же достаточна для того, чтобы сделать это мероприятие целесообразным. При появлении иных средств, позволяющих-таки получить зашифрованную информацию в разумные сроки, изменяют принцип работы алгоритма, и проблема повторяется на более высоком уровне.

Область науки, посвященная исследованиям методов реконструкции закрытого ключа называется криптоанализом

Средняя продолжительность времени, необходимого для реконструкции закрытого ключа по его опубликованному открытому ключу, называется криптостойкостью алгоритма шифрования.

ЭЦП – документа позволяет получателю только удостовериться в истинности отправителя документа, но не проверить подлинность документа.

Создаются (с помощью специальной программы полученной от банка) два ключа: закрытый и публичный.

Публичный ключ передается банку. Если надо отправить поручение банку на операцию с расчетным счетом, оно кодируется публичным ключом банка, а своя подпись под ним кодируется собственным закрытым ключом.

Банк поступает наоборот. Он читает поручение с помощью своего закрытого ключа, а подпись – с помощью публичного ключа поручителя. Если подпись читаема, банк может быть уверен, что поручение отправили именно мы, и никто другой.

Послушайте... нельзя ли вам, для общей нашей пользы, всякое письмо, которое прибывает к вам в почтовую контору, входящее и исходящее, знаете, этак немножко распечатать и прочитать: не содержится ли в нем какого-нибудь донесения или просто переписки...

Н.В.Гоголь «Ревизор»

В идеале конфиденциальное письмо должны иметь возможность прочитать только двое: отправитель и тот, кому оно адресовано.Формулировка такой, казалось бы, очень простой вещи, явилась отправной точкой систем криптозащиты. Развитие математики дало толчок к развитию подобных систем.

Уже в XVII-XVIII веках шифры в России были достаточно изощренными и устойчивыми к взлому. Многие русские математики трудились над созданием или усовершенствованием систем шифрования и параллельно пытались подобрать ключи к шифрам других систем. В настоящее время можно отметить несколько российских систем шифрования, таких как «Лексикон Верба» , Secret Net, DALLAS LOCK, Secret Disk, семейство продуктов «Аккорд» и др. О них и будет рассказано.Вы также ознакомитесь с основными программными и программно-аппаратными комплексами криптозащиты, узнаете об их возможностях, о сильных и слабых сторонах. Надеемся, что эта статья поможет вам сделать выбор системы криптозащиты.

Введение

Обеспокоены ли вы тем, что важная информация из вашего компьютера может попасть в чужие руки? Этой информацией могут воспользоваться и конкуренты, и контролирующие органы, и просто недоброжелатели. Очевидно, что такие действия могут принести вам значительный ущерб. Что же делать? Для того чтобы уберечь свою информацию от посторонних, необходимо установить одну из программ шифрования данных. Наш обзор посвящен анализу систем шифрования для настольных систем. Следует отметить, что использование зарубежных систем шифрования на территории России в силу ряда причин сильно ограничено, поэтому государственные организации и крупные отечественные компании вынуждены использовать российские разработки. Однако средние и мелкие компании, а также частные лица иногда предпочитают зарубежные системы.

Для непосвященных шифрование информации выглядит чем-то вроде черной магии. Действительно, шифрование сообщений для сокрытия их содержания от посторонних является сложной математической задачей. К тому же шифр должен быть подобран таким образом, чтобы без ключа открыть его было практически невозможно, а с ключом - быстро и легко. Многим компаниям и организациям бывает очень трудно сделать оптимальный выбор при установке шифровальных программ. Дело осложняется еще и тем, что абсолютно защищенных компьютеров и абсолютно надежных систем шифрования не бывает. Однако все же есть достаточно способов, с помощью которых можно отразить практически все попытки раскрыть зашифрованную информацию.

Что у программ шифрования внутри

Программы шифрования отличаются друг от друга алгоритмом шифрования. Зашифровав файл, вы можете записать его на дискету, послать его по электронной почте или положить на сервер в вашей локальной сети. Получатель вашей шифровки должен иметь такую же шифровальную программу, чтобы прочитать содержимое файла.

Если вы хотите отправить зашифрованное сообщение нескольким пользователям одновременно, то ваша информация для каждого получателя может быть зашифрована по его собственному ключу либо по общему ключу для всех пользователей (включая автора сообщения).

Система криптозащиты использует секретный код для того, чтобы превратить вашу информацию в бессмысленный, псевдослучайный набор символов. При хорошем алгоритме шифрования практически невозможно дешифровать сообщение без знания секретного кода, использованного для шифрования. Такие алгоритмы называют алгоритмами с симметричным ключом, так как для шифрования и дешифровки информации используется один и тот же ключ.

Для защиты данных программа шифрования создает секретный ключ по вашему паролю. Надо только задать длинный пароль, который никто не сможет угадать. Однако если требуется, чтобы файл смог прочесть кто-то другой, вам понадобится сообщить этому человеку секретный ключ (или пароль, на основе которого он создан). Можно быть уверенным, что даже простой алгоритм шифрования защитит ваши данные от обычного пользователя, скажем, от коллеги по работе. Однако у профессионалов есть целый ряд способов дешифрации сообщения без знания секретного кода.

Без специальных знаний самостоятельно проверить, насколько надежен ваш алгоритм шифрования, вам не удастся. Но вы можете положиться на мнение профессионалов. Некоторые алгоритмы шифрования, такие, например, как Triple DES (Data Encryption Standard - стандарт шифрования данных), были подвергнуты многолетней проверке. По результатам проверки этот алгоритм хорошо себя зарекомендовал, и криптографы считают, что ему можно доверять. Большинство новых алгоритмов также тщательно изучаются, а результаты публикуются в специальной литературе.

Если алгоритм программы не подвергся открытому рассмотрению и обсуждению профессионалов, если у него нет сертификатов и других официальных бумаг, - это повод усомниться в его надежности и отказаться от использования такой программы.

Другая разновидность систем шифрования - это системы с открытым ключом. Для работы такой системы нет необходимости сообщать адресату секретный ключ (или пароль, на основе которого он создан). Указанные системы шифрования генерируют два цифровых ключа для каждого пользователя: один служит для шифрования данных, другой - для их расшифровки. Первый ключ (называемый открытым) можно опубликовать, а второй держать в секрете. После этого зашифровать информацию сумеет любой, воспользовавшись открытым ключом, а расшифровать - только тот, кто имеет соответствующий секретный ключ.

Некоторые программы шифрования содержат еще одно важное средство защиты - цифровую подпись. Цифровая подпись удостоверяет, что файл не был изменен с тех пор, как был подписан, и дает получателю информацию о том, кто именно подписал файл. Алгоритм создания цифровой подписи основан на вычислении контрольной суммы - так называемой хэш-суммы, или дайджеста сообщения. Применяемые алгоритмы гарантируют, что невозможно подобрать два разных файла, хэш-суммы которых совпали бы.

Когда адресат получает файл с цифровой подписью, его программа шифрования заново вычисляет хэш-сумму для этого файла. Затем получатель с помощью открытого ключа, опубликованного отправителем, восстанавливает цифровую подпись. Если результат соответствует значению, вычисленному для файла, то получатель может быть уверен, что текст сообщения не был изменен (если бы это произошло, хэш-сумма оказалась бы иной), а подпись принадлежит человеку, имеющему доступ к секретному ключу отправителя.

Для защиты важной или конфиденциальной информации нужна не только хорошая программа шифрования. Вам необходимо принять ряд мер для обеспечения информационной безопасности. Если ваш пароль ненадежен (специалисты рекомендуют задавать его из восьми или более символов) или если незашифрованная копия конфиденциальной информации хранится у вас на компьютере, то в этом случае даже лучшая система шифрования окажется бессильна.

Система «Лексикон-Верба»

Система «Лексикон-Верба» является средством организации защищенного электронного документооборота как внутри корпоративной сети, так и между различными организациями. В «Лексиконе-Верба» используются две модификации системы криптографии: система «Верба-W» предназначена для государственных органов (защита конфиденциальной информации, в частности ДСП; ключи подписи - открытые, ключи шифрования - закрытые), система «Верба-OW» - для коммерческих организаций (защита коммерческой тайны; ключи подписи и шифрования - открытые).

Существует довольно много мировых стандартов шифрования, но лишь малая их часть имеет сертификаты Федерального агентства правительственной связи и информации (ФАПСИ), что делает невозможным применение несертифицированных решений на территории России. Система «Верба-W» имеет сертификат ФАПСИ № СФ/114-0176. Система «Верба-ОW» - сертификат ФАПСИ № СФ/114-0174.

«Лексикон-Верба» обеспечивает шифрование и электронную цифровую подпись в соответствии с требованиями ГОСТ 28147-89 «Системы обработки информации. Защита криптографическая» и ГОСТ Р34.10-94 «Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма».

Программа сертифицирована Гостехкомиссией при Президенте Российской Федерации. В июле ожидается получение сертификата Минобороны России.

В основе работы криптозащиты системы лежит методика шифрования с открытым ключом. Каждый ключ, идентифицирующий пользователя, состоит из двух частей: открытого и секретного ключа. Открытый ключ может распространяться свободно и используется для шифрования информации данного пользователя. Для расшифровки документа нужно, чтобы пользователь, зашифровавший его, имел ваш открытый ключ и при шифровании указал вас как имеющего доступ к документу.

Чтобы расшифровать документ, нужно воспользоваться закрытым ключом. Закрытый ключ состоит из двух частей, одна из которых хранится на смарт-карте или touch-memory, а другая - на жестком диске вашего компьютера. Таким образом, ни утеря смарт-карты, ни несанкционированный доступ к компьютеру не дают, каждый по отдельности, возможности расшифровать документы.

Первоначальный ключевой комплект, включающий в себя полную информацию об открытых и закрытых ключах пользователя, создается на специально оборудованном защищенном рабочем месте. Дискета с ключевой информацией используется только на этапе подготовки рабочего места пользователя.

Система «Лексикон-Верба» может быть использована в рамках двух основных систем организации защищенного документооборота:

  • как самостоятельное решение. При наличии в организации локальной сети систему можно установить не на все компьютеры, а только на те, где требуется работа с конфиденциальными документами. Это значит, что внутри корпоративной сети возникает подсеть обмена закрытой информацией. При этом участники закрытой части системы могут обмениваться с остальными сотрудниками и открытыми документами;
  • как составная часть документооборота. «Лексикон-Верба» имеет стандартные интерфейсы подключения внешних функций для выполнения операций открытия, сохранения, закрытия и отправки документов, что позволяет легко интегрировать эту систему как в существующие, так и во вновь разрабатываемые системы документооборота.

Следует отметить, что свойства системы «Лексикон-Верба» делают ее не только средством обеспечения информационной защиты от внешних проникновений, но и средством повышения внутрикорпоративной конфиденциальности и разделения доступа.

Одним из важных дополнительных ресурсов повышения уровня контроля информационной безопасности является возможность ведения «журнала событий» для любого документа. Функция фиксации истории документа может быть включена или отключена только при установке системы; при ее включении данный журнал будет вестись независимо от желания пользователя.

Главным достоинством и отличительной особенностью системы является простая и интуитивно понятная реализация функций защиты информации при сохранении традиционной для текстовых процессоров рабочей среды пользователя.

Блок криптографии осуществляет шифрование, а также установку и снятие электронной цифровой подписи (ЭЦП) документов.

Вспомогательные функции блока - загрузка секретного ключа, экспорт и импорт открытых ключей, настройка и ведение справочника ключей абонентов системы.

Таким образом, каждый из имеющих доступ к документу может поставить только свою подпись, но снять - любую из ранее поставленных.

Это отражает принятый порядок делопроизводства, когда по мере прохождения визирования документ может подвергаться правкам на разных этапах, но после этого документ должен быть завизирован заново.

При попытке внести изменения в документ иными, нежели «Лексикон-Верба», средствами, ЭЦП повреждается, в результате в поле «Статус подписи» появится надпись «Повреждена».

Офис

При увеличении числа пользователей системы внесение каждого открытого ключа на каждый компьютер становится затруднительным. Поэтому для организации работы офиса организуется централизованное администрирование справочника открытых ключей. Это делается следующим образом:

1) на компьютере администратора устанавливается «Лексикон-Верба» в локальном режиме. При этом создается справочник открытых ключей, в который администратор добавляет каждый используемый в офисе ключ;

2) на всех остальных компьютерах система устанавливается в сетевом режиме. В этом режиме используется справочник открытых ключей, находящийся на компьютере администратора;

3) каждый новый пользователь, внесенный администратором в справочник, становится «виден» всем пользователям, подключенным к справочнику. С этого момента они получают возможность передавать ему зашифрованные документы.

Администрирование справочника становится централизованным, но на уровень безопасности системы это не влияет, так как предоставление доступа к открытым ключам - это своеобразное «знакомство» пользователей, но доступа к каким-либо документам оно не дает. Для получения пользователем возможности расшифровки документа необходимо, чтобы его открытый ключ не только находился в справочнике, но и был явно указан как имеющий доступ к документу.

Понравилась статья? Поделитесь с друзьями!